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INTRODUCTION 

The decision maker is often forced to decide between obscure or un

defined alternatives. This dilemma is particularly acute when the numb

er of alternatives is extremely large. For example, an executive who is 

bidding on a project to install a continuous pipeline through several 

scattered towns has the problem of selecting one of many possible routes 

linking them. To avoid being underbid by competitors, the executive at

tempts to select the shortest route on which to base his costs. In this 

case, the dilemma he faces is that of selecting the shortest route from 

a very large number of alternative routes. For instance, if the execu

tive were bidding on a project to install a pipeline through 31 towns, 

he would need to search through more than 232,200,000,000,000,000,000, 

000,000,000,000 possible routes — a job much too large for the fastest 

electronic computer. 

Traditionally, the routing problem has been illustrated by describ

ing the task of selecting the optimum route for a traveling salesman who 

starts from a given city and stops at each city of a specified group be

fore returning to his origin. Consequently, though sometimes known as 

the assignment problem, it has become internationally known as the 

"traveling salesman problem." 

In 1959 Kaufmann (11) described the difficulty of solving this 

problem: 
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We regret to state that there is, at present, no 
analytical method that makes it possible, in the 
general case, to find the minimum solution of a 
traveling salesman problem, other than by trying 
all the permutations, whose number quickly be
comes astronomical: for example, with symmetri
cal unit costs: 

10 cities (transfers): 181,940 cycles (routes) 
20 cities: a number of 19 digits. 

Even the fastest electronic computer would never 
- complete such a task. 

Merrill M. Flood (8) stated in 1955 that there were no computational 

methods, and surprisingly few mathematical results, relative to the prob

lem. At about the same time, G. Dantzig, R. Fulkerson, and S, Johnson 

(6) agreed that little was known, and that their method of using combi

natorial analysis could not be used as a routine procedure. The funda

mental question they raised was: in general, does the use of a few 

linear inequalities reduce the combinatorial magnitude of such problems 

significantly? Their answer was: "We do not know the answer to this 

question in any theoretical sense. , In 1958, G. A. Croes stated 

that past efforts to find an efficient solution met with only partial 

success. In 1963, Little, Murty, Sweeney, and Karel (14) commented: 

In recent years a number of methods for solving 
the problem have been put forward. Some suffer 
from inefficiency, others produce solutions that 
are not necessarily optimal, and still others 
require intuitive judgments that would be hard 
to program on a computer. 

Mathematicians apparently discussed the optimum route problem in

formally at meetings for many years: Hassler Whitney raised the ques

tion at a Princeton seminar in 1934, according to Flood (8), who created 

widespread interest when he attempted to optimize the routing of school 

buses as early as 1937. Soon after 1950, he joined Robinson, Koopmans, 
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Beck, Heller, and Kuhn in exploring the relationship between this problem 

and the linear programming (transportation) problem. 

It is interesting, however, that few results were published before 

1954. Both Dantzig (7) and Flood (8) observed the similarity with the 

so-called Hamiltonian game (concerned with finding the number of different 

tours possible over a specific network), and discussed the possibility 

that it stimulated investigation of the shortest tour problem. In 1954, 

Dantzig, Fulkerson and Johnson modified the linear programming algorithm 

and applied it to a few traveling salesman problems. One year later, 

G. Morton and A. H. Land (17) believed they had formally stated this 

problem in linear programming terms. They felt they had avoided one of 

the major difficulties in linear programming formulation (the appearance 

of sub-cycles) by including a time subscript in each distance notation, 

thus making the program dynamic. (However, in a discussion which followed. 

Dr. I, Heller stated that this "dynamic" approach was not the linear 

programming form of the problem.) In 1957, G. A. Croes (4) presented a me

thod that successively improves a given route until certain specified 

improvements are exhausted. Also in 1957, Minty (15) described his analog 

string model, and Barachet (1) published his graphic approach. In 1963, 

R. L. Karg and G. L. Thompson (10) employed a heuristic approach, and 

more recently (1965), Shen Lin (13) introduced two computer programs 

which were useful only for symmetric routing. 

The objective of this investigation is to develop efficient and 

reliable methods for selecting the optimum route from a very large number 

of possibilities, and to develop techniques which will permit route men, 
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such as milk haulers, to select the optimum sequence of pickups or de

liveries. Both manual and computer approaches will be utilized. 

Companies financing pipeline projects are similarly interested in 

route selection, because they would prefer to ask for bids on the short

est route, thus lowering installation as well as future operating and 

maintenance costs. 

Similar routing problems occur when electric power plants are 

linked together to insure continuous service, or when television relay 

stations are interconnected to extend service to new customers, Sequenc

ing problems which also fit this category include the assigning of jobs, 

to machines, the layout of plants and the routing of school buses, pump

ing station attendants, collection and delivery trucks -- even "paper 

boys." 
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REVIEW OF LITERATURE 

In 1954, G. Dantzig, R. Fulkerson, and S. Johnson (7) described a 

linear programming approach that sometimes, at least, enabled one to find 

an optimal route and prove it so. Then, in 1957, Dantzig (5) presented 

a simplex algorithm for finding the shortest distance from the initial 

node of a network to each other node. To accomplish this, he first 

selected several arbitrary routes which fanned out from the initial node 

like the branches of a tree. Each of the other nodes had only one link 

leading to it, and distances along each branch were accumulated and re

corded at the nodes. A direct link lies along a branch, but an indirect 

link does not. When the shortest path between the initial node and any 

other particular node contains an indirect link, it becomes part of a 

branch, and the inferior link is—eliminated from the branch. Similarly, 

other links which are not a part of a branch are introduced one at a 

time, and are included when any node value is decreased. For each new 

link added to a branch, some other link must be removed; however, a re

jected link might rejoin a branch at some later time. This procedure 

continues until no further decreases are possible, indicating that the 

"shortest-route tree" has been produced. Pollack and Wiebenson (21) 

illustrate the "shortest-route tree" pictorially in describing Menty's 

string model. Other more efficient methods have since been suggested. 

In 1955, Flood (8) clarified some of the relationships between 

traveling salesman, transportation, distribution, and assignment problems. 

He pointed out that other authors had written on these relationships; for 
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example, Julie Robinson solved the assignment problem while searching 

for a solution to the traveling salesman problem, and T. C. Koopmans 

discussed the possible relationships between the traveling salesman and 

distribution problems. Flood showed how the method for solving the as

signment problem might be applied to the traveling salesman problem; 

however, he did not show how such a procedure could be efficiently used 

on a variety of actual situations. 

L. L. Barachet (1) in 1957 presented a graphic approach, which 

starts with an arbitrary route and forms new routes by first changing 

every group of three consecutive segments that improves the route. Then, 

each improved route is further improved by additional changes of four, 

five, . . . n-1 consecutive segments. The author's method is rather 

awkward to apply, and he admits that one cannot be certain that the 

optimum route will be produced, even when no group of n-1 consecutive 

segments can further improve the route. 

G. A. Groes (4), in 1958, applied a simple transformation called 

"inversion", to transform a trial solution into another which has lower 

costs. He continued modifications until no further inversions seemed 

desirable, but there was no assurance that the optimum route had been 

achieved. He developed another method, to be used as a final adjustment, 

which gives some added assurance of selecting the desired route; but 

these final adjustment procedures are rather tedious and time consuming 

if done manually. The author admits that such procedures would be dif

ficult to program on a computer, because they involve mostly inspectional 

work. 
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The heuristic approach, proposed by R. L. Karg and G. L. Thompson 

(10) in 1963, selects a pair of cities at random, and combines them with 

a third in such a way as to minimize the length of the three-city sub-

route. Then a fourth city is selected and included, in such a way as to 

minimize the resulting four-city subroute. Other cities are included in 

this manner until the route is composed of n cities. The generation of 

each route begins with the random selection of two cities and finishes 

when all n cities have been included in such a way as to minimize the 

resulting subroutes. This procedure is continued until some arbitrary 

number of routes has been generated. The best route generated depends 

on the pair of cities chosen at random, and on the the order in which 

the remaining cities are selected. According to the authors, the prob

ability that the first generated route is optimum is 0.16 for n = 10 and 

0.0045 for n = 42. Large problems are factored into subproblems, and 

each subproblem is generated separately in order to reduce the computa

tional effort required. The authors do not claim this method is infall

ible; they do say that good answers may be attained in relation to the 

amount of computer time used. This method is not at all satisfactory 

for the manual approach. 

Also in 1963, Little, Murty, Sweeney, and Karal (14) presented a 

"branch and bound" method, in which they break up a set of all routes 

into increasingly small subsets ("branching"), and calculate for each 

subset a lower bound on the length of the tours. Eventually, a subset 

is found that contains a single tour whose length is less than, or equal 

to, some lower bound for every tour. This method does extend the size 



www.manaraa.com

8 

of problem that can be reasonably handled by computer, without using 

methods special to the particular problem. 

In 1964,Gilmore and Gomory (9) approached the sequencing problem by 

considering a machine with a single real variable x which describes its 

state. More specifically, they describe the problem as follows: 

Jobs J^, . . . , Jj^ are to be sequenced on the 

machine. Each job requires a starting state 

and leaves a final state This means that Jj^ 

can be started only when x ~ and, at the 

completion of the job, x = Bj_. There is a cost, 

.which may represent time or money, etc., for 
changing the machine state x so that the next 
job may start. The problem is to find the mini
mal cost sequence for the N jobs. 

The authors defined their model in terms of a permutation h that 

minimized c(g) without requiring the resultant route to be feasible. 

Then, by carrying out a series of interchanges, they converted permuta

tion h into a route These interchanges -- which must be made in a 

special sequence in order to produce the minimal route £ -- were chosen 

by finding a minimal spanning tree. 

Their model is difficult to apply, although V. I. Mudrov (18) did 

point out that his interger linear programming model could eliminate some 

of the difficulty. 

Also in 1964, Boutwell and Simmons (3) attempted to estimate milk 

assembly costs without considering where the dairy farms were actually 

located. They designed their model for one type of road network, and 

they assumed the milk producers to be distributed uniformly over that 

network. The model was intended oily as an example of how route costs 

might be estimated under assumed conditions; therefore, it does not 

qualify for the general case. 
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Shen Lin (13) recently (1965) introduced two computer programs which 

were useful for symmetric routing only. The program (which he described 

as being a slight modification of the one by Held and Karp) is very 

limited because it cannot be used when there are more than 13 cities. 

Even though this model has little practical value, it did satisfy a few 

perfectionists because an optimal solution was guaranteed. The second 

program is useful for a large number of cities, but an optimum solution 

is not assured and it is limited to the symmetric case. It does appear 

to be more efficient than the others reviewed here. 

Some interesting analog methods have been applied to the shortest 

route problem. Minty (15) produced a simple analog for the symmetric 

case by designing a string model so that knots represented cities and 

string links between the knots represented road distances. When the 

initial and final knots are pulled apart, the links that stretch tight 

comprise the shortest route(s). The shortest-route tree may also be 

found by attaching a weight to each of the knots and lifting the network 

by the initial knot, thus allowing the links that stretch tight to form 

the shortest-route tree. 

Bock and Cameron used a similar analogy, as described by Peart et ai. 

(19), when they placed a gas-discharge tube along each link of a matrix. 

The tube conducted electrical current above a certain critical voltage, 

which represented the length of a particular link. After all the links 

were electrically connected, a voltage was applied across the initial 

and final terminals and increased just enough to reach the minimum total 

critical level, thus causing the tubes along the shortest route to glow. 
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Increasing the voltage is analagous to pulling apart the initial and 

final knots of Minty's string network. 

Rapaport and Abramson (22) also described an analog device which 

uses variable electric timers to simulate distances between cities. 

They designate one end of the electrical timing circuit as the initial 

city and the other end as the final city. When the master clock is 

started, the initial node is energized and all timers (one for each link) 

leading from it are started. Each of these timers attempts to energize 

the node with which it is linked, but succeeds only when it is the first 

to signal the node. When a timer energizes a node, it activates a light 

representing that particular link. The timers that fail to signal the 

node first never activate any lights. As new nodes are energized, they 

in turn start timers, and so on, until either the final city is reached 

or until all nodes are reached, and all the links making up the shortest-

route tree (as defined by Dantzig, reviewed above) will be lighted. 

None of these authors produced an efficient manual algorithm; none 

produced a computer algorithm which was applicable to the general prob

lem, and was both efficient and precise. 
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INVESTIGATION 

A typical route with multiple stops (or transfers) begins at some 

point such as position 1 in Figure 1, then proceeds to destinations 3, 

2, 4, and 5 (perhaps in that order), and returns to the starting point. 

The numbered positions represent points of transfer or stops and the 

linking segments represent distances between stops. Table 1 includes 

segment lengths for the route in Figure 1, as well as segment lengths 

for all other possible routes. Other concepts -- time, cost, etc. --

can also be considered. For example, segment 1,3 in Table 1 has a value 

of 26, and segment 1,2 has a value of 30, either of which could be in 

miles, hours, dollars, or some other measurable value. 

The sequence of the segments in Figure 1 is 1 to 3, 3 to 2, 2 to 4, 

4 to 5, and 5 to 1, and the route length is 160 (26+24 + 40 + 30 + 40 

= 160). Other ways of indicating sequence are: 

(1) 1,3 3,2 2,4 4,5 5,1 

(2) From 1 3 2 4 5 

To 3 2 4 5 1 

(3) 1 3 2 4 5 1 

The objective is to select the sequence of segments which will give 

the optimum route. Mathematically, the problem may be stated as follows: 

Given a cost matrix D = (d^^), where d^^ = the cost of going from posi

tion i_ to position j, (i, j = 1, 2, . . . , n), find a permutation P = 

(i^, ig, . . . , i^) of the intergers from 1 through n that optimizes 
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O 4 2 

1 

Figure 1. An arbitrary route with five stops (transfers) 
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Table 1. Cost matrix for a five-position problem 

Route Positions (From) 

1 2 3 4 5 

1 0 30 26 50 40 

Route 2 30 0 24 40 50 

Positions 3 26 24 0 24 26 

(To) 4 50 40 24 0 30 

5 40 50 26 30 0 
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the quantity 

d. . + d. . + . . . + d. . 
1^2 ^2^3 Vl 

Since the route in Figure 1 was selected arbitrarily, it may or 

may not be optimum; however, a later comparison of all 12 possible routes 

showed that the best route has a length of 148 and a sequence 1 2 3 4 5 1. 

One difficulty is that as the number of stops increases, the method which 

measures all possible routes becomes impractical — even impossible. 

One of the objectives of this investigation is to develop efficient 

and reliable methods for selecting the optimum route from a very large 

number of possible routes. Since there are numerous ways to attack this 

problem, the following theses will provide practical guidelines for the 

investigation: 

1. The optimum route may be produced by making particular changes 

on an arbitrary route. 

2. Only feasible changes need to be considered, since other changes 

produce incomplete routes. 

3. Any feasible route may be produced by one or more feasible 

changes. 

4. The optimum route may be selected without considering all possi

ble feasible routes. 

Development of efficient methods within these guidelines is still 

very difficult. One major problem is that of consistently producing 

feasible changes: another is that of selecting the optimum route from 

all possible feasible routes. These two major problems appeared to re

quire different approaches; therefore, the investigation proceeded on 

the following lines: 
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1. The development of an algorithm which can consistently make 

changes that produce new and feasible routes; and 

2. The development of a second algorithm which can economically 

select the optimum route from many other feasible routes. 

Algorithm for Generating Feasible Routes 

During this phase, a great deal of experimenting produced two groups 

of changes, a feasible group and a nonfeasible group. Analysis of the 

results showed that every attempt to exchange any one segment on the 

route for any one not on the route produced a nonfeasible change, and 

therefore, a nonfeasible route. Also, every attempt to exchange any two 

segments on a route for any two not on the route failed to produce a 

feasible change. 

However, the following results showed that any three segments may 

be feasibly changed: 

Arbitrary: 

3^ ~4 5 1 
(25) + (24) + (40) + (30) + (40) = (160) 

(Route distances from Table 1) 

The resulting modified route is: 

Modified: 12 3 4 5 

2 3 4 5 1 
(30) + (24) + (24) + (30) + (40) = (148) 

(Route distance) 

Note that segments 1 to 3, 3 to 2, and 2 to 4 of the arbitrary route were 

respectively exchange for segments 1 to 2, 3 to 4, and 2 to 3, and that 
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this particular change was not only feasible, but it produced the 

optimum (shortest) route. 

Any combination of three segments may be feasibly changed, 

and, as illustrated here they need not be adjacent to each other. 

1 

3 

Modified: 14 5 3 2 

4 5 3 2 1 

Ten three-segment changes may be made on a five-segment route. This is 

the number of combinations of three things that can be selected from a 

group of five, or generally: 

n! 51 
° - rl (n-r); " JT^ ' 

where £ = The number of ways of occuring. 

n = The number of segments in the group. 

r_ = The number of segments in a change, or the number of things 

selected from the group. 

There is only one way that a particular set of three segments can 

be changed. Proof of this is easily demonstrated by attempting other 

changes,such as: 
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Arbitrary: 

Modified: 

(Nonfeasible) 

Note that the modified route is incomplete, because two segments are 

omitted. 

Any four segments may be feasibly changed; as with the three's, 

there is only one way to feasibly change a particular set of four seg

ments (Shown pictorially in Figure 2): 

Arbitrary: 

Modified: 

Any five segments may be feasibly changed; however, unlike the 

three's and four's, a set of five segments can be feasibly changed 

eight ways, as shown in Figure 3. One of the eight changes follows: 

Arbitrary: 
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Q 4 2 

1 

Arbitrary 

2 

1 

Modified 

Figure 2. Effect of a four-segment change 
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Modified: 12 5 4 3 

2 5 4 3 1 

The investigation also showed that any number of segments greater 

than two -- every segment of a 1000-segmént route, for instance -- can 

be feasibly changed at one time; but because of the inflexibility of 

this procedure, it cannot be conveniently adapted to the manual approach. 

A continued search led to the development of an algorithm which is 

especially adaptable to the manual approach. Besides being easy to use, 

this algorithm provides a great deal of flexibility, and an assurance 

that the changes are actually feasible. Some examples follow: 

Arbitrary: 

Modified : 

Arbitrary: 

Modified : 

Arbitrary: 

Modified : 

1 

4 1 2 3 

1 5 4 2 3 1 

1 

1 5 4 3 2 1 
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Figure 3. Eight ways to make a five-segment change 
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Proof that this algorithm can consistently and effectively generate 

feasible routes is not difficult: the only requirement for a feasible 

route is that the tour begin at position 1, and end at 1 after passing 

through each of the other positions only once. One can observe that the 

changes generated by the new algorithm fully meet this requirement. Now 

that the generation of feasible changes can be controlled, a procedure 

is needed to evaluate these changes, so that appropriate ones may be 

selected and made. 

Algorithm for Economically Selecting the Optimum Route 

A scheme such as the following, aimed at evaluating the effect of 

deviating from an arbitrary route, provides one way of developing the 

algorithm being sought. 

1. Segments of the arbitrary route are circled on the cost matrix. 

See Table 2. 

2. Rearrange the cost matrix so that the arbitrary route lies 

along a major diagonal. See Table 3. 

3. Compute the net costs of deviating from the arbitrary route by 

subtracting each column cost from the circled cost in Table 3, and re

cord the net costs in Table 4. 

The circled costs may then be replaced by segment titles, such as 

1 to 3 or 1,3, thus eliminating the need for row and column titles. 

Title 1,3 represents the segment between nodes 1 and 3 -- ie., it repre

sents traveling from city 1 to city 3. 
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Table 2. Cost matrix for a five-position problem 

Route Positions (From) 

1 2 3 4 5 

1 0 30 26 50 (
D
 

Route 2 30 0 ® 40 50 

Positions 3 0 24 0 24 26 

(To) 4 50 0 24 0 30 

5 40 50 26 (30) 0 

Table 3. Cost matrix for a five-position problem, rearranged 

Route Positions (From) 

1 3 2 4 5 

3 0 X 24 24 26 

Route 2 30 0 X 40 50 

Positions 4 50 24 

(
D
 

X 30 

(To) 5 40 26 50 0 X 

1 X 26 30 50 0 
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Table 4. Net cost of deviating from the abritrary route 

Route 

Positions 

(To) 

Route Positions (From) 

13 2 4 

0 16 6 14 

-4 0 -10 -10 

-24 0 (Ctô  0 10 

-14 -2 -10 0 

0 -2 10 -20 
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The route length may be changed by replacing the circled segments 

with other segments. Positive values in Table 4 shorten the route and 

negative values lengthen it. For example, to travel from 2 to 3 would 

shorten the route by 16. The savings of 16 cannot be realized immediate

ly, because one segment cannot be feasibly exchanged for another, and 

neither can two be exchanged for two others. Therefore, if one wishes 

to travel from 2 to 3 in order to save 16, he must also travel from 1 to 

2 and from 3 to 4. According to Table 4, this change would shorten the 

route by 12 (16 - 4+0 = 12) and produce the following feasible route 

which is also optimum: 

1,2 2,3 3,4 4,5 5,1. 

Unfortunately, solutions are not usually so easy. Since there are 

only 12 possible routes, one would expect an easy solution. However, it 

is important to note that as the route is lengthened by a few segments, 

solution becomes tremendously more difficult. Since one objective of 

this investigation was to discover ways to solve large problems effi

ciently, three attempts were made to overcome some of the difficulties. 

The first attempt called for the selection of an initial, optimum 

route; but since this was not attained, attention was turned to the 

selection of an initial route that minimizes the solution effort. A 

partially successful approach starts the tour at position 1 and always 

advances it to the next closest available position. Another approach 

selects several arbitrary routes and tries to transform each into an opti

mum path. This heuristic method does not guarantee an optimum solution; 
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and, since precision is dependent upon the number of arbitrary routes 

selected, one must choose between greater precision and greater economy 

of selection. Heuristic approaches have been applied to the traveling 

salesman problem (10), the improved allocation of limited resources on 

project work (16), and the optimizing of assembly line scheduling (24). 

Because of the repetitiveness of this method, a computer is usually re

quired. 

The second attempt sought for better ways to transform an initial 

route into the optimum route. Even though it would be desirable to make 

the transformation instantly, it may not be necessary to do so. In fact, 

the idea of generating a particular change by combining two or more other 

changes are explored. For example, two three-segment changes can produce 

the same reult as a particular five segment change: 

(1) 1 2 3 4 5-^ 9\ 6\ .8 ̂ 10 7 

10 

2 3 4, 5 10 9 8 6 
(Shortest Route) 

The same result can also be accomplished by combining two three-

segment changes: 

(l.a) 1 2 3 4 5 9\ 6\ ^8 10 7 

8 no 
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(l.b) 1 2 3 4 5\ 9 6\ 10 7 

2 3 4 5 9--̂  8 6 1̂0 7̂ 1 

1 23 45 10 9 8 6 7 

2 3 4 5  1 0  9 8 6  7 1  
(Shortest Route) 

Also the same result can be attained by making two changes at one 

time if they are independent of each other: 

(2) 1 2 3 4 5\ 9\ 6\ ,8 7\ 10 

2 3 4 5 9-"̂  6 7 ^10 H 

1 2 3 4 5  1 0  9 8 6 7  

2  3 4 5  1 0  9 8 6 7 1  

(Shortest Route) 

Another example shows how a seven-segment change can produce the 

shortest route: 

(3) 1\ 3\ ,2 5\ ^4 9\ ^10 8 6 7 

3 2 5 ^4 9 ^10 8 6 7 1 

1 2 3 4 5  1 0  9 8 6 7  

2 3 4 5 10 9 8 
(Shortest Route) 

6 7 1 
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All 10 segments may be changed at one time to produce the shortest 

route: 

(4) K 4\ ̂ 3 ,2 10k /5 7^ 9\ ^6 ,8 

4 3^ ^2 10"^ 5 7-^ ^9 6^ 8 ^1 

5 10 8 6 

2 3 4 5  1 0  9 8 6 7 1  

(Shortest Route) 

The third attempt sought to reduce the number of iterative route 

changes -- without reducing precision, if possible — and thus reduce 

the effort required in the search. This attempt successfully developed 

a procedure which can transform any arbitrary route into the desired 

route by making all necessary segment exchanges at one time. By this 

means, the four previous problems may be solved: 

(1) 1 2 3 4 -5 10 7 1 

( 2 )  

1 2 3 4 5 10 9 8 6 71 

(Shortest Route) 

1 2 3 4 5 10 9 8 

(Shortest Route) 
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(3) 1 3 2 5 4 9 10 8 6 7 1 

1  2 3  4  5  1 0  9 8 6 7  1  

(Shortest Route) 

(4) 1 4^ 3 2 10 5 7_ 9 6 

4 5 10 9 

(Shortest Route) 

The manual approach for selecting the shortest route is straight

forward and readily understood if the chart (Figure 4, p. 32) is used 

in two ways. One way (described first) is more effective as a computer 

approach, and less effective as a manual approach. 

After preparing such a chart, three- and/or four-segment changes 

are evaluated and the best one is selected. Manual effort may be re

duced by selecting the most effective combination of independent changes 

instead of the most effective single change. 

After the change or changes have been made, the route sequence is 

rearranged and the chart is updated. Then the three's and four's are 

again evaluated, and the cycle is continued as long as the updated route 

can be shortened. This procedure often produces the shortest route, and 

in any case, the new route will be shortest or close to it. Greater 

reliability is ensured by making changes of five, six, seven, etc.; how

ever, the effort required increases rapidly. 

Figure 4 shows how a three-segment change is made and evaluated. 
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Circled numbers designate rows and columns of the original matrix; for 

example, 1,3 refers to the intersection of column 1 and row 3. The 

values of segments 1,3 and 1,2 are 26 and 30, respectively^as shown in 

Table 1. The net cost of using segment 1,2 is -4: 26 - 30 = -4. The 

other net costs in Figure 4 are computed in a similar manner. 

Position numbers defining the arbitrary route are circled in Figure 

4. A three-segment change from this arbitrary route is feasible only if 

each segment's column intersects with another's row at a circle, and if 

each segment's row intersects with another's column at a circle (See 

Figure 4). For example, values 6 and -4 intersect at 1,3; values -4 and 

-2 intersect at 3,2; values -1 and 6 intersect at 4,5. The net cost of 

this change is 0: 6-4-2=0. If the three-segment change were made, 

segments 1,3; 3,2; and 4,5 would be exchanged for 1,2; 3,5; and 4,3. 

Figure 5 illustrates how a four-segment change is made and evaluated. 

In this case, four net costs are selected and summed. Starting at some 

circled number, say 4,5, select a net cost 6 in its column, and another 

net cost -14 in its row, so that both are equidistant from the circle. 

Then, starting at another circled number, say 2,4, select a net cost 10 

in its column and a net cost 10 in its row, and as before, so that both 

are equidistant from their common circle. The only other requirement is 

that both pairs of linking lines must cross, as shown in Figure 5. Dur

ing this change, segments 1,3; 2,4; 4,5; and 5,1 are exchanged for 1,5; 

2,1; 4,3; and 5,4 to shorten the route, by 12: -14 + 10 + 6 + 10 = 12. 

(Note that a four-segment change actually consists of two two-segment 

changes that overlap.) 
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Only changes that include at least one positive difference (net 

cost) need to be evaluated. This reduces the number of permutations to 

be evaluated, and thus reduces the manual effort. In Figure 4 there are 

seven possible three-segment changes which have at least one positive 

difference: 

5,4 
(10) + 

2,5 
(-10) -f 

4,1 
(-20) -20 

5,3 
(14) + 

1,2 
(-4) + 

3,1 
(-2) = 8 

5,3 
(14) + 

1,4 
(-24) + 

2,1 
(10) 0 

5,3 
(14) + 

1,5 
(-14) + 

4,1 
(-20) -20 

5,2 
(-10) + 

3,4 
(0) -f-

2,1 
(10) 0 

4,3 
(6) + 

1,2 
(-24) + 

3,5 
(-10) = -28 

2,3 
(16) + 

1,2 
(-4) + . 

3,4 
(0) 12 

Of these seven potential changes, two shorten the route, three 

lengthen it, and two neither lengthen or shorten it. The most effective 

change would shorten the route by 12. In this particular case, no combi

nation of independent changes can shorten the route more than 12 units. 

Feasible four-segment changes are generated in a similar way, and 

only three of them have at least one positive difference: 

5,4 2,1 4,3 1,5 
(10) + (10) + (6) + (-14) = 12 

5,1 3,1 4,3 1,5 
(-10) + (-2) + (6) + (-14) = -20 
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5 , 2  3,1 2,3 1,4 
(-10) + (-2) + (16) + (-14) = -10 

One of the three changes would shorten the route, and the other two 

would lengthen it. The most effective change shortens the route by 12; 

as before, no combination of independent changes is more effective. 

Next, select the largest change and rearrange the route. The large

st change for each algorithm is 12, and the best routes generated by the 

three's and four's are: 

1,2 2,3 3,4 4,5 5,1 
(From a three-segment change) 

1,5 5,4 4,3 3,2 2,1 
(From a four-segment change) 

(Note that in this particular case, one of the new routes is the reverse 

of the other.) 

Next, the net cost chart is updated (Figure 6), and new evaluations 

for the three's and fours are made: -

Three-•segment changes : 

5,4 
(10) + 

3,5 
(-2) 4-

4,1 
(-20) -12 

5,3 
(14) + 

2,4 
(-16) + 

3,1 
(-2) -4 

5,3 
(14) + 

2,5 
(-26) 

4,1 
(-20) = -32 

4,3 
(6) 

2,4 
(-16) -h 

3,5 
(-2) = -12 

5,2 
(-10) + 

1,3 
(4) 4 

2,1 
(-6) . = -12 

4,2 
(-10) + 

1,3 
(4) -f* 

2,5 
(-26) -32 
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. . . . X < • • 14 

—4 • • • 
-0 

X -lb -10 

-24 9 0 X 10 

-14 -2 
• • 0  

X 

X -2 10 -20 
0 

Figure 4. A three-segment change on a net cost chart 

0 
X 16 6 14 

-4 
0 

X -lb -10 

-24 0 0'" 

-14 •• • X X 

X -2 10 -20 
0 

Figure 5. A four-segment change on a net cost chart 
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3 , 2  1,3 2,4 
(0) + (4) + (-16) = -12 

Four-segment changes: 

5,4 3,1 4,3 2,5 
(10) + (-2) + (6) + (-26) = -12 

5,4 3,1 4,2 1,5 
(10) + (-2) + (-10) + (-10) = -12 

5,3 2,1 4,2 1,5 
(14) + (-6) + (-10) + (-10) = -12 

5,3 2,1 3,2 1,4 
(14) + (-6) + (0) + (-20) = -12 

As just shown, the new route in Figure 6 cannot be further improved with 

three- or four-segment changes. Actually, it could not have been short

ened with any change, because it is already the shortest route. All pos

sible changes have been made to verify that the new route in Figure 6 is 

the shortest. 

This algorithm is more adaptable to the computer approach; however, 

those wishing to use it manually may reduce the effort required by re

cording only potentially acceptable changes, and by using overlay guides 

to quickly locate and evaluate feasible changes. 

A more effective algorithm for the manual approach uses a modified 

net cost chart (Figure 7) which simplifies the selection process, be

cause any feasible route can be generated by extending a line from posi

tion 1 through each of the other positions in any order, and finally to 

position 1 at the other end or the route. The net costs provide a guide 

for economical sequencing; however, a certain amount of reasoning is re

quired to select the optimum path. For example, according to Figure 7, 
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0 0 0 -10 -10 

4 0 0 6 14 

-20 -16 0 0 10 

-10 -26 -2 0 0 

-6 -2 -20 

©
 

Figure 6. Net costs of deviating from a given five-segment route 

A 

© 161 14 

•0 
-10 -10 

-24 0 10 

-14 •10 0 
- 2  10 -20 vO. 

Figure 7. Net costs of deviating from a given five-segment route, and 

the optimum solution 
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the biggest single improvement (16) is accomplished by traveling from 2 

to 3 instead of from 2 to 4 along the route. For convenient documenta

tion,- a line is drawn from 2 to 3 on the chart, and similarly additional 

lines are completed as other segments are selected. Chart values appear

ing above the arbitrary route indicate a direction from right to left, 

and values appearing below indicate a direction from left to right --

e.g., 16 is the improvement of going from 2 to 3, and 0 is the improve

ment of going from 3 to 2. Position 1 must be linked to another: 1,5 

costs 14; 1,4 costs 24; and 1,3 is prohibited because 2,3 has previously 

been selected; therefore, by process of elimination, segment 1,2 is sel

ected. Nximber 4 must be linked to another: 4,1 produces an incomplete 

route, and besides, would cost 10; 4,2 and 4,3 are prohibited because 

1,2 and 2,3 were previously selected; so segment 4,5 is selected because 

of the low cost of 0 and because the other possibilities had already been 

eliminated. Number 3 must also be linked to another: since 3,1 produces 

an incomplete route, the only apparent alternative remaining is 3,4. 

Number 5 can only be linked to 1. The new route (1,2 2,3 3,4 4,5 

5,1), as shown earlier, is the shortest path. 

Further steps may be taken to verify that the optimum route has 

been selected: 

1. Update the net cost chart with the newest modified route before 

attempting to find a better route. 

2. Make one or more attempts to find the best route without updating 

the net cost chart. (This step is usually less time consuming.) 

A combination of these two steps may be used where reliability is 

very important, or where a computer can be used for updating. The 
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linking lines as in Figure 7 may be recorded on a transparent ovarlay 

for each proposed solution. This procedure is very efficient because no 

new charts are needed, and it provides a permanent record if desired. 

The largest single possible improvement is not always incorporated 

into the shortest route. This is demonstrated in the solution of the 

ten-segment problem shown in Table 5. Figure 8 shows the net costs of 

deviating from an arbitrary route. The largest single improvement is 

a gain of 56, which occurs when segment 7,3 is exchanged for 7,10. How

ever, it is not selected in this particular case, because to do so would 

bring about greater losses. Since the route must end at 1 on the right, 

it is important to evaluate alternative ways to end the route. Segment 

7,1 shortens the route by 33, which is by far the greatest end-of-route 

improvement. All other end-of-route alternatives (except 2 to 1) length

en the route by 33 or more, so they are not likely prospects. To go from 

2 to 1 is not a likely alternative either, because this would prohibit 

going from 1 to 2, which would cost between 29 and 85. Therefore, seg

ment 7,1 is selected. This selection rules out segment 7,3, which showed 

the potential improvement of 56. Segment 8,6 is selected, because its 

potential improvement of 52 is the second largest in the matrix. One 

segment must end at 8. Segments 7,8 and 6,8 have already been eliminat

ed •— 7,8 because 7 already goes to 1, and 6,8 because 8 already goes to 

6. Of the segments available, 10,8 has the least cost, but it should 

not be used, because other alternatives from 10, such as 10 to 9 or 10 

to 5, produce greater savings. So the best alternative appears to be 

segment 9,8 -- even though it lengthens the route by 12. Now segment 
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Table 5. Cost matrix for the 10-segment problem 

Route Positions (From) 

2 3 4 5 6 7 10 

o 
H 

w 
o 
4J 
•r-{ 

W 
o 

S 
PS 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

0 

28 

57 

72 

81 

85 

80 

113 

89 

80 

28 

0 

28 

45 

54 

57 

63 

85 

53 

63 

57 

28 

0 

20 

30 

28 

57 

57 

40 

57 

72 

45 

20 

0 

10 

20 

72 

45 

20 

45 

81 

54 

30 

10 

0 

22 

81 

41 

10 

41 

85 

57 

28 

20 

22 

0 

63 

28 

28 

80 

63 

57 

72 

81 

63 

0 

80 

89 

63 113 

113 

85 

57 

45 

41 

28 

80 

0 

40 

80 

89 

63 

40 

20 

10 

28 

89 

40 

0 

40 

80 

63 

57 

45 

41 

63 

113 

80 

40 

0 
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-35 -44 -35 -29 50 

56 -10 -20 -12 -29 

-44 -17 

-53 -26 -10 32 

4ff -61 -35 -20 -10 

50 -57 -29 -10 52 -12 

-85 -57 -37 -35 

-71 -61 Vr35 -52 -35 -37 -52 -33 

-52 -35 -37 -35 1-31 -12 -35 

-62 -71 -61 -57 -33 -37 

Figure 8. Net costs of deviating from a given 10-segment route, and 

the optimum solution 



www.manaraa.com

39 

10,9, with an improvement of 40, can be selected. A segment must end 

at 10. Of the remaining available segments ending at 10, segment 5,10 

is the least costly. The remaining minimum cost segments are 1,2; 2,3; 

3,4; and 4,5. Each has a cost of 0. When all of the previous selections 

are combined the new route becomes: 

1 2 3 4 5 10 9 8 6 7 

2 3 4 5  1 0  9 8 5 7 1  

(Shortest Route) 

This manual approach is easily applied to larger problems, as demon

strated in Figures 9 and 10, where a 26-segraent problem is solved. The 

cost matrix is given in Table 6. Visual selection of the optimum route 

can be made easier by highlighting the zero and positive values on the 

net cost chart. (It helped to highlight the zero values with one color 

and the positive values with another. A third color for the largest 

value in a column which is zero or larger would also be helpful.) 

Some would prefer to display the arbitrary route horizontally, as 

in the net cost chart in Figure 11. The solution is the same as the one 

shown in Figure 8. 

Computer Approaches for Selecting the Optimum Route 

Programming the computer to evaluate all possible routes and select 

the optimum is very inefficient and impractical, because the total number 

of routes that need to be evaluated is given by (n-l)I for the asymmetri-

2 
cal case and —(n-l)I for the symmetrical case, where n is the number of 

stops on the route. Therefore, the computer should be programmed to 
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Table 6. Cost matrix for 

0 3 4 5 6 3 4 

3 0 3 3 4 2 3 

4 3 0 3 3 4 4 

5 3 3 0 2 4 4 

6 4 3 2 0 5 5 

3 2 4 4 5 0 2 

4 3 4 4 5 2 0 

4 2 3 3 4 3 2 

5 3 3 1 2 4 4 

7 5 5 3 3 6 5 

3 3 5 4 6 2 3 

5 3 4 4 5 3 2 

6 4 4 3 4 4 3 

7 5 5 3 3 5 4 

7 5 5 3 3 5 4 

4 5 7 7 8 4 4 

5 4 6 6 7 3 3 

6 4 5 4 4 4 3 

8 6 6 5 5 6 5 

9 7 7 5 5 7 6 

6 6 8 8 9 5 6 

6 5 6 6 7 4 4 

7 5 6 6 7 5 4 

8 6 6 5 6 6 5 

9 7 7 5 5 7 6 

9 7 7 5 5 7 6 

25-segment problem 

i) 7 3 5 6 7 7 

3 5 3 3 4 5 5 

3 5 5 4 4 5 5 

1 3 4 4 3 3 3 

2 3 6 5 4 3 3 

4 6 2 3 4 5 5 

4 5 3 2 3 4 4 

3 5 3 2 3 4 4 

0 3 5 4 3 3 3 

3 0 6 5 4 3 2 

5 6 0 3 4 5 5 

4 5 3  0 3 4 4 

3 4 4 3 0 3 3 

3 3 5 4 3 0 2 

3 2 5 4 3 2 0 

7 8 3 4 5 6 7 

6 7 3 3 4 5 6 

4 5 4 2 2 3 4 

5 5 6 4 3 3 4 

5 4 7 5 4 3 4 

8 9 5 5 6 7 8 

6 7 4 3 4 5 6 

6 7 5 3 4 5 6 

5 6 6 4 3 4 5 

5 5 7 5 4 3 4 

5 3 7 5 4 3 4 

the 

4 

2 

3 

3 

4 

3 

2 

0 

3 

5 

3 

2 

3 

4 

4 

5 

4 

3 

5 

6 

7 

5 

4 

5 

6 

6 

4 5 6 8 9 

5 4 4 6 7 

7 6 5 6 7 

7 6 4 5 5 

8 7 4 5 5 

4 3 4 6 7 

4 3 3 5 6 

5 4 3 5 6 

7 6 4 5 5 

8 7 5 5 4 

3 3 4 6 7 

4 5 2 4 5 

5 4 2 3 4 

6 5 3 3 3 

7 6 4 4 4 

0 3 4 5 6 

3 0 3 4 5 

4 3 0 3 4 

5 4 3 0 2 

6 5 4 2 0 

3 3 5 5 6 

3 2 3 3 4 

4 3 3 3 4 

5 4 3 2 3 

6 5 4 2 2 

7 6 4 4 3 

6 7 8 9 9 

5 5 6 7 7 

6 6 6 7 7 

6 6 5 5 5 

7 7 6 5 5 

4 5 6 7 7 

4 4 5 6 6 

5 4 5 6 6 

6 6 5 5 5 

7 7 6 5 3 

4 5 6 7 7 

3 3  4 5 5 

4 4 3 4 4 

5 5 4 3 3 

6 6 5 4 4 

3 4 5 6 7 

2 3 4 5 6 

3 3 3 4 4 

3 3 2 2 4 

4 4 3 2 3 

3 3 4 5 8 

0 2 3 4 6 

2 0 3 4 6 

3 3 0 3 5 

4 4 3 0 4 

6 6 5 4 0 

6 

6 

8 

8 

9 

5 

6 

7 

8 

9 

5 

5 

6 

7 

8 

3 

3 

5 

5 

6 

0 

3 

3 

4 

5 

8 
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10» Net .costs of cleviciting fironi a given 26~segnient route 
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Figure 11. Net costs of deviating from a given 10-segment route 
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evaluate only'a small percentage of the total number of possible routes, 

or to do the type of reasoning required by the manual approach. Since 

the computer has not been advanced enough to do this type of reasoning, 

the investigation was limited to the development of an effective algor

ithm which evaluates only a small percentage of all routes. As with the 

manual approach, the thesis of the computer approach was that feasible 

changes may be made on an arbitrary route in order to transform it into 

the optimum route. 

This investigation started with very basic computer manipulations, and 

continued through more complex phases. For convenient illustration of 

the methods investigated, the five-segment problem as shown in Table 2 

was analyzed first. 

Phase 1 The first phase was concerned only with selecting the 

initial (arbitrary) route. Since any one of (n-l)I routes may be chosen, 

it is important to know whether some of them are more likely to produce 

the optimum route and/or to permit a more efficient solution. The in

vestigation attempted to evaluate a few methods for selecting the initial 

route and any subsequent arbitrary routes: 

1. Select the major diagonal of the cost matrix for the initial 

route, i.e., the positions going sequentially from 1 to 2, 2 to 3, 3 to 

4, etc. 

2. Select the next closest available position, beginning at 1, and 

returning to 1 after each other position has been included in the route. 

3. Choose positions at random. (This method seems practical when 

several subsequent arbitrary routes are needed.) 
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4. Choose any initial route and modify it to produce a second; 

modify the second to produce a third;.modify the third to produce a 

fourth; etc. For example, arbitrary routes may be generated in the 

following manner : 

First Arbitrary Route: 

Second Arbitrary Route: 

Third Arbitrary Route: 

Fourth Arbitrary Route: 

The method of selecting the next closest position was used for much 

of the remaining investigation. It was initially chosen because it ap

peared to have two advantages, especially for the manual approach: 

1. Initial routes were sometimes close to optimum in length, but 

were never close to the maximum possible length; 
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2. Often a front section of the route was optimum, thus forcing 

unwanted segments toward the end of the route. 

Further investigation showed that (1) above had little advantage. 

For example, the initial route of the 26-segment problem (Table 6) was 

only one unit longer than optimum, yet 11 segments had to be exchanged 

to produce the best route. Thus, a route nearly optimum in length is not 

necessarily easily made optimum. The second advantage was partly con

firmed as shown in Figures 8 and 9. 

When two or more segments qualify as the next closest position, 

either one may be selected. For the manual method, the first was usually 

selected. 

Phase 2 The investigation now turns to the generation and evalua

tion of new routes. Each time a change is made, a new route is generated. 

The number of three-segment changes that can be made on an n-segment 

XII 
route is given by —(n^sYT' the five-segment route there are 

5 ; 
— , — o r  1 0  p o s s i b l e  t h r e e - s e g m e n t  c h a n g e s ;  t h i s  a g r e e s  w i t h  t h e  

results in Figure 12. 

Such changes may be evaluated by two different methods: 

1. Evaluate one proposed change and decide whether to make it. If 

the change is not made, evaluate another and decide whether to make it. 

When a change is made, the new route is rearranged, and evaluations are 

again made. This cycle is continued until all three-segment improvements 

are exhausted. 

2. Evaluate all possible three-segment changes on the first route 

and choose the best one, provided an improvement is made. After the new 
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route is rearranged, all possible changes are again evaluated and the 

best one is chosen, provided an improvement is made. After the newest 

route is rearranged,all possible changes are again evaluated and the 

one with the greatest improvement is chosen. This cycle is continued 

until all three-segment improvements are exhausted. 

Changes were generated by method 1 in the order shown in Fig. 12 

and evaluated: 

1 3 2<v 4\ ^5 

2 4"^ ^5 

(Arbitrary route) 

3 2 5 4 1 

(Modified route) 

• (̂ 2.4 + ̂4.5 + - <̂ 2,5 + + ̂5,4> 

= (40 + 30 + 40) - (50 + 50 + 30) 

= 110 - 130 = -20 

where = Value of the change based on costs in Table 3, 

Vg ̂  = Value of the arbitrary segment 2,4, 

V^ ̂  = Value of the alternate segment 2,5. 

Since this particular change would lengthen the route by 20, it should 

not be made. The computer then moves to the next possible three-segment 

change and makes a similar evaluation: 



www.manaraa.com

48 

2 - ^  4  ^ 5  

( A r b i t r a r y  r o u t e )  

5  2  4  

( M o d i f i e d  r o u t e )  

Vc - ('3/2 + «4,5 +'5,l) • ('3.5 + «4.1 + ̂5,2) 

=  ( 2 4  4 -  3 0  +  4 0 )  -  ( 2 6  +  5 0  +  5 0 )  

=  9 4  -  1 2 6  =  - 3 2  

T h i s  c h a n g e  w o u l d  a l s o  l e n g t h e n  t h e  r o u t e ,  a n d  t h e r e f o r e  s h o u l d  n o t  b e  

m a d e .  

T h e  e v a l u a t i o n  o f  p o t e n t i a l  c h a n g e s  w a s  c o n t i n u e d  u n t i l  t h e  f i r s t  

p o s i t i v e  c h a n g e  w a s  e n c o u n t e r e d ,  o r  u n t i l  a l l  p o s i t i v e  c h a n g e s  w e r e  e x 

h a u s t e d .  W h e n  t h e  f i r s t  p o s s i b l e  p o s i t i v e  c h a n g e  ( t h e  s i x t h  i n  t h i s  

c a s e )  w a s  e n c o u n t e r e d ,  i t  w a s  m a d e :  

A r b i t r a r y :  1 \  3  2  4  — - 5  

3 -  " 2  4  5  ^ 1  

( 2 6 )  +  ( 2 4 )  +  ( 4 0 )  +  ( 3 0 )  +  ( 4 0 )  =  1 6 0  
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1 1 3  

3 2 4-^'"^5 "1 

2  1 3 5  

3  2  1  

3  1  

3  

4  1 3 5  

3  2  1  

5 5  

1 

6 5  

1 

7 4  5  

5  1  

8 4  5  

5  1  

9 4  5  

5  1  

1 0 4  5  

5  1  

Figure 12. The evaluation of all the 10 possible 
for the route 13 2 4 5 1 

-32 

-20 

0 

0 

8 

-20 

-28 

0 

12 

three-segment changes 
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Figure 13. The evaluation of all the 10 possible three-segment changes 
for the route 12 3 4 5 1 
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Modified: 

2  4  5  3  1  

(30) + (40) + (30) + (26) + (25) = 152 

Then, after the modified route was rearranged, new evaluations were made 

as before, and the first potential positive change was encountered and 

made : 

Arbitrary: 1 2^ 4 5\ ^3 

2  4  5  ^ 3  " 1  

(30) + (40) + (30) + (26) + (26) = 152 

Modified: 

2  3  4  5  1  

(30) + (24) + (24) + (30) + (40) = 148 

Note that this method produced the optimum route; however, when used 

in a similar way, it missed the best path for the 10-segment problem 

by three units. 

Optimum results were not attained for either the 15- or 57-segment 

problems whose cost matrices are presented in the Appendix; but with 

different initial routes, this procedure could have produced optimum 

results for both problems. It is easy to see that an initial route 

could be selected so that a particular number of three-segment changes 
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would produce the optimum length. In practice, however, the task of 

selecting such an initial route is almost as difficult as selecting the 

optimum route. 

To illustrate the second method, all possible three-segment changes 

for the five-segment route were evaluated and presented in Figure 12. 

From these evaluations, the largest possible positive change (12 in this 

case) was selected to transform the arbitrary route into a new modified 

route: 

(26) + (24) + (40) + (30) + ' (40) = 150 

Modified: 12 3 4 5 

2 3 4 5 1 

(30) + . (24) + (24) + (30) + (40) = 148 

All possible three-segment changes for the new modified route were eval

uated (Figure 13). None of the changes further improved the route; how

ever, this was appropriate, since the new modified route was already 

optimum. This method also produced the optimum route for the 10-segment 

problem, but missed the optimum for the 26-segment problem by one unit; 

however, the optimum was attained by modifying the initial route -- the 

first of two or more segments which qualified for the next closest posi

tion was selected, instead of the last. 
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Phase 2 The use of four-segment changes following three-segment 

changes was evaluated in two different ways: (1) Evaluate all possible 

changes, select the largest one, and rearrange the new route; perform 

the same operations on the modified route and on each newly generated 

route until all positive changes appear to be exhausted. (2) Select 

the first possible positive change, and rearrange the new route; select 

the next possible positive change and rearrange the newest route; con

tinue this procedure until all such improvements are exhausted. The 

four-segment change was evaluated in a way similar to that of the three-

segment change. Thus: 

Arbitrary: 1 3 v. 2 "v. ^4 .5 

Modified: 

- <"3,2 + "2,4 + \,5 + - ("3,5 + "2,1 + "4.2 + "5,4> 

= (24 + 40 + 30 + 40) - (26 + 30 + 40 + 30) 

= 134 - 126 = 8. 

Note that for the symmetric case, only two new segments needed to be 

compared to two old ones, because the other two new ones were the reverse 

of the two old ones: (V^ 2 ^5 4^ " ^^2 4 \ 5^ ~ this 

case: 
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'c ' <^3.2 + ^5,1> - <^3.5 + 

= (24 + 40) - (26 + 30) 

= 64 - 55 = 8. 

This method was particularly efficient when a large number of segments 

were evaluated at one time. One type of n-segment change was evaluated 

by comparing only two new segments with two old ones, as illustrated in 

the following five-segment change: 

Arbitrary: 

Modified: 

+ ^3,6> - ^^.3 + ^5,6> 

The other segments did not change the length for the symmetric case be

cause: 

^2,3 " ^3,2 

^4,2 = *2,4 

*5,4 " *4,5 ' 

Phase ̂  As shown earlier, two three-segment changes were com

bined to produce the same result as a five-segment change or a four-

segment change. Furthermore, newly generated'changes, such as five's 
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and four's, were further combined with three's or others to produce the 

same results as still larger changes. (The significance of these re

lationships is that the three's and/or four's can be combined in a 

particular way to produce the optimum route from perhaps any arbitrary 

route.) 

Several attempts were made to develop a procedure which would 

combine the appropriate changes required to produce the optimum route. 

The first attempt began by evaluating successive three-segment 

changes as in Phase 2, except that a change was made when the first zero 

or positive evaluation was encountered. Then, after that particular 

zero or positive change was selected and made, the route was rearranged. 

Next, the evaluation of successive three-segment changes was resumed, 

not at the point where the last change was made, but at the same end of 

the route where the initial evaluation was made. Again, the first pos

sible zero or positive change was selected and made, and the route was 

rearranged, as was done previously. This procedure was continued until 

all possible positive improvements appeared to be exhausted. One diffi

culty with this procedure was that a zero change could be reversed to 

reform the original segments, thus causing cycling to occur. This diffi

culty was overcome by modifying the computer program; however, the solu

tion to the 26-segment problem managed to escape this algorithm also. 

Using the four's in addition to the three's, (and in a similar manner) 

did not produce the optimum route either. The program was modified to 

exhaust all positive three- and/or four-segment changes before any zero 

changes were made; but even that did not appear to improve the reliability. 
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Therefore, the first attempt at generating the desired change by 

combining small changes was not successful. The second attempt, an ex

tension of the first, was developed to give the three's considerably 

more opportunity to combine and generate the desired results. This ap

proach began by making three-segment evaluations at one end as before 

and continuing toward the ultimate end until the first zero or positive 

evaluation was encountered. After the change was selected and made, the 

route was rearranged as before; but instead of restarting the evaluations 

at the end of the route, they were restarted at the stopped position. 

Then, instead of continuing toward the ultimate end of the route in 

search of zero or positive changes, the reverse direction was temporarily 

taken. Advancement in the reverse direction was continued as long as any 

segment of an evaluation overlapped any segment of the initial change 

(the first change made in the forward direction). At the point of no 

overlap, the evaluation process reverted back to the point of the initial 

change and continued toward the ultimate end, until another change was 

made or until the ultimate end was reached. If another change was made, 

the reverse direction was again taken temporarily. At the point of no 

overlap, the evaluation process reverted back to the last change in the 

forward direction. This cycle was continued until the three's reached 

the ultimate end. 

With this procedure, the optimum route for the 26-segment problem 

was not found -- nor was the optimum route for the 10-segment problem 

found. 

The third attempt at generating the desired change provided even 

more opportunity of combining the appropriate changes. In this case. 
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both the three's and four's were used independently in the same manner 

as the three's were used in the previous attempt. This additional activ

ity not only combined three's with three's, but it combined four's with 

four's and four's with three's as well. However, this additional feature 

did not produce the optimum route for the 10- or 26-segment problems. It 

did, however, produce a nearer optimum route for the 15-segment problem 

than was produced by the three's alone when searching for the largest 

positive changes. 

Phase 2 The initial route was selected by starting at position 

1 and always going to the next closest position. In the case of two or 

more being equally close, the computer selected the last one evaluated. 

With this selection, the three-segment algorithm did not find the opti

mum solution for the 26-segment problem, but did find it when the initial 

route was formed by choosing the first of equally close positions instead 

of choosing the last. 

This discovery raised another important question: can a more ef

fective and efficient algorithm be developed which evaluates each of 

several initial routes with a simplified procedure, instead of evaluating 

one initial route with a complex and lengthy procedure? 

In an attempt to answer this question, some fundamental characteris

tics of the three-segment change were investigated. Answers to the fol

lowing questions provide an insight into these characteristics: 

1. When a change is made, how long are the intervals, or spans, 

between pairs of adjacent segments? In other words, how long are inter

vals ^22 as defined in Figure 14? (The interval between the first 
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and second segments of the change is represented by between 

the second and third by Sgg.) 

2. How do the values of the largest changes vary as successive 

changes are made? 

X 

X 

Figure 14. Three-segment change 

3. When only the largest possible change is made, how many itera

tions are required to exhaust all three-segment improvements? 

Answers to these three questions were concluded from the experiment

al results shown in Table 7. In some cases, more results were needed to 

draw stronger conclusions. 

According to Table 7, 14 of the 23 changes had intervals of zero 

length between the first and second segments, and 11 of the 23 changes 

had intervals of zero length between the second and third segments. Also, 

8 of the 23 changes had intervals of zero length between all segments. 

Similarly, none of the intervals exceeded n/2 and only three in

tervals exceeded n/2. Table 7 also shows that the initial interval 

lengths are considerably longer than later ones. 



www.manaraa.com

59 

Values of the largest change from each iteration are recorded in 

Table 7. Note that the earlier changes are larger than the later ones. 

For example, the value of the first change on the 57-segment problem is 

1,345, compared to the 13 produced by the last change. The relative 

decrease in the succeeding values appears to be a function of the varia

tion of segment lengths in the distance matrix. Furthermore, the suc

cessive values for the 26-segment problem appears to decrease at a 

lesser rate than those of the 10- and 57-segment problems. The varia

tion of the segment lengths of the 25-segment problem is small compared 

to those of the 10- and 57-segment problems. (See Tables 5 and 6 for 

the distance matrices of the 10- and 26-segment problems.) 

Table 7 showed that the number of successive three-segment changes 

required to exhaust positive changes is approximated by (n + l)/5. 

The longest possible interval that can occur is n - r_, where £ is 

the number of segments changed. For example, the longest three-segment 

interval needed for evaluating the 26-segment problem was given by 23(26-

3); yet, according to Table 7, the longest interval for any change actual

ly made was nine in length. Others were much shorter: for example, there 

were six intervals with zero in length, two with one in length, one with 

two in length, and one with three in length. 

The total number of three-segment evaluations made on the 26-segment 

problem for the six largest changes is given by; 

r! fc-r); • (3;)S-3): - •• Z'GOO p« change. 
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Experimental results of successively generating the largest 
positive three-segment change on each of several routes 

Improvement 
Interval Between Produced by Number 
Changed Segments the Largest Segments 

^12 ^23 
Possible Change Problem, 

2 0 42 10 
0 0 5 

2 8 42.4 15 
0 1 3.1 
0 4 3.2 

8 4 19.4 16 
3 0 19.3 
0 1 3.6 

9 0 40 26 
3 1 30 • 
0 1 20 
0 0 10 
0 2 10 
0 0 10 

15 14 1345 57 
9 39 315 
0 0 207 
3 4 192 
0 0 98 
0 0 92 
0 0 39 
0 40 . 13 
0 0 13 
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If these six changes can be made with interval lengths of nine or short

er, then a procedure which uses interval lengths as long as 23 does a 

great deal of unproductive searching. 

One attempt to eliminate much of the unproductive searching limited 

the interval lengths to (n+l)/2. When this restriction was applied to 

the 26-segment problem, the number of evaluations per change was approx

imately 1,380, compared to 2,600 without limits. Similarly, since the 

expected interval links became shorter with later changes, the interval 

limits were designed to shrink as succeeding changes were made. With 

limits, this method did efficiently generate the same results as the 

method without limits for the 10-, 15-, 16-, and 26-segment problems. 

It did not produce the same results for the 57-segment problem. 

One important difference occured when the designed limits prevented 

any largest change from being made: the loss was not regained during 

later successive changes. To illustrate this, the second largest change 

for the 57-segment problem required an interval length of 39 which was 

greater than (n + l)/2, or 29. Table 8 shows that the value of improve

ments amounted to 2,314 without limits, and to 1,991 with limits. 

The best solution was often generated from one initial route, but 

was more likely from two or more. Such a problem called for a precision 

versus effort decision: additional initial routes increased the effort, 

but improved the precision. It also appeared true that a more efficient 

method of generating and evaluating changes would justify more initial 

routes. These methods were made more efficient by; 
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1. Limiting the interval lengths to prevent making unproductive 

evaluations provided a good example of designing efficient methods. 

Table 7 showed that four of five problems were solved more efficiently. 

Failure on the fifth, was not as much a drawback as first appeared. When 

several initial routes were evaluated, not all were adversely affected 

by the limits. If doubt persists, this method should be followed by 

another searching technique, which would still permit another opportunity 

for optimizing the route. 

2. Making the first positive change instead of making the largest 

change led to a more efficient solution. Searching was previously 

started at one end of the route; after each change was made, it was 

again started at the same end. On long routes, this was especially un

productive, because searching continued repetitively over portions of the 

route which had already been improved. This difficulty was eliminated 

by removing the segments which had been improved and attaching them to 

the other end of the route: 

In this case, evaluations started on the left and proceeded to the right 

until the first positive change was made as shown above. Previously, 

searching would have again started with segment 1,2 of the following new 

route: 
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Table 8. Effect of limited internal length on generating three-segment 

changes for a 57-segment route 

Change 
Number 

Intervals 

12 23 

Improvement 
from the Largest 

Change 
12 23 

Improvement 
from the Largest 

Change 

1 15 14 1,345 15 14 1,345 

2 9 39 315 0 0 207 

3 0 0 207 1 11 113 

4 3 4 192 0 0 98 

5 0 0 98 0 0 92 

6 0 0 92 0 1 91 

7 0 0 39 0 0 39 

8 0 40 13 0 0 6 

9 0 0 13 - -

Total Route Improvement 2,314 1,991 
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1 2 3 6 4 5 7 

2 3 6 4 5 7 1 

However, to permit more efficient searching, the new route was modified 

to begin with the first segment of the last change: 

3 6 4 5 7 1 2 

6 4 5 7 1 2 3 

Then, when the searching resumed on the left, it was immediately in a 

fertile area of possible changes. The route was rearranged in this 

manner after each change. This procedure was designed for any size of 

change, i.e., three segments, four segments, five segments, etc. 

Phase 6_ Another algorithm which can readily change any number 

of segments was developed for the symmetric case. It was easily adapted 

to the computer approach which was contrary to previous approaches that 

required a particular computer sub-program for the three's, another for 

the four's, still another for the five's, etc. 

The new pattern of searching (illustrated in Figure 15) made 20 

evaluations on a six-segment problem; however, the number in general is 

given by: 

n-1 n-1 

(n - r - i + 1) 

i=0 r=3 
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where n = Tlie number of segments in the route 

r_ = The number of segments evaluated at any one time 

_i = An indexing variable — i.e., it moves the evaluation model 

from one end of the route to the other. 

After all possible changes were evaluated (20 in this example), the 

computer would have selected the largest one and made the change. Then, 

after this change was made and the route rearranged, all possible changes 

for the new route were evaluated, and the largest one was again selected 

and made. This procedure was continued until all positive changes were 

exhausted. 

This algorithm may also be adapted to the method which searches for 

the first positive change. After the change is made, the computer contin

ues looking for the first positive change. The route may also be modified 

so that the searching is always limited to unimproved parts of the route 

illustrated in phase 5. 

Phase 2 Computer and manual approaches may be easily combined 

to provide additional flexibility. For example, after the computer has 

produced the optimum (or near optimum) route, the manual approach can be 

used to verify the solution or make improvements if necessary. Since the 

computer was programmed to print out a net cost chart similar to the one 

in Figure 8, manual verification can be accomplished within a few min

utes. 

The computer was also programmed to compute and print out a net cost 

chart for any route, so that any existing route could be manually im

proved within a short period of time. 
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Change Number 
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Change Number 

Figure 15 (continued) 
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APPLYING TRAVELING SALESMAN 
ALGORITHMS TO MILK COLLECTION ROUTES 

Most milk is transported to processing plants in tank-mounted 

trucks whose hauling capacities range from 1800 to 3300 gallons. Since 

some trucks travel up to 300 miles per day to collect milk from about 

15 dairy farms, it is important that an optimum, or near optimum, route 

be used. Planning such a route can be a difficult task; for example, 

13 
there are approximately 1 x 10 possible routes linking 15 dairy farms 

-- more than a hauler could ever hope to evaluate. The manual algorithm 

developed during this investigation can permit haulers to solve such 

problems. Now that the computer algorithm is available, a group (perhaps 

a milk cooperative) could determine optimum routes for all haulers. 

Three milk routes in central Iowa were selected to illustrate the 

use of these algorithms. Route A is shown in Table 11, route B in Table 

12, and route C in Table 13. Distances were taken from highway commis

sion maps. 

Manual algorithm^ Route A was selected to illustrate the manual 

approach. Position 1 of the distance matrix represents the truck garage 

(also the process plant in this case); the other positions represent 

dairy farms. Route distances actually traveled, which lie along the 

major diagonal of Table 9, are: 

1 
No attempt was made to use the computer approach to find the short

est path for Route A; however, the three-segment computer algorithm which 
searches for zero and positive changes was applied to the initial route 
once. The computer reduced the distance from 135 miles to 120 miles, and 
found seven different routes having a length of 120 miles. 
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ble 9 . Matrix of distances from each dairy farm to every other 
dairy farm. Route A , 

1 2 3 4 5 6 7 8 '9 10 11 12 13 14 15 16 

0 2 8 16 

(T) 0 10 18 

8 10 0 8 

16 18 

7 5 8 13 

8 6 9 13 

3 Q) 12 19 

7 8 3 10 11 14 30 31 35 30 30 % 
5 6 4 11 12 16 32 32 37 32 32 34 

8 © 12 14 20 23 29 29 34 29 29 31 

13 13 19 22 27 30 30 29 34 29 28 31 

0 1 © 16 17 20 37 37 43 38 38 40 

© 0 7 18 17 20 37 37 43 38 37 40 

7 7 0 12 12 13 32 33 38 33 33 35 

10 11 14 (22) 16 18 12 0 6 9 20 21 26 21 20 23 

11 12 20 27 17 17 12 (T) 0 3 21 21 26 21 21 23 

14 16 23 30 20 20 13 9 Q 0 19 20 25 20 20 22 

30 32 29 30 37 37 32 20 21 0 1 6 10 14 15 

31 32 29 29 37 37 33 21 21 20 (T) 0 5 9 14 14 

35 37 34 34 43 43 38 26 26 25 6 (7) 0 7 12 12 

30 32 29 29 38 38 33 21 21 20 10 9 (7) .0 5 5 

30 32 29 28 38 37 33 20 21 20 14 14 12 (T) 0 3 

33 34 31 31 40 40 35 23 © ° 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 

2  +  1 0  +  8 +  1 3  + 1 + 7  +  1 2  +  6 +  3 +  1 9  + 1 + 5 + 7 + 5 + 3  + 3 3  =  1 3 5  
(Sum of distances traveled is 135) 

After the distance matrix was completed, the next step was to con

struct a net cost chart. Even though the chart may have been developed 

from any feasible route, it was prepared from an initial route which was 

generated by always selecting the next closest available position -- the 

circled values in Table 9 were selected in this manner. After rearrang

ing the route along the major diagonal, the net cost chart was prepared 

by subtracting distances not on the route from those on the route,(See 

Figure 16). For example, if one traveled from 1 to 7 instead of from 

1 to 2, he would lengthen his journey by 1, as shown in the upper left 

part of the chart: 

P 
0 @ 

k 0—0 

Table 9 also verified this, since the distance 1 to 2 is 2, and the 

distance 1 to 7 is 3. 

The initial route lying along the major diagonal of Figure 16 had 

a length of 135 miles and a sequence of: 1 2 7 ... 16 1. It 

was shortened by changing the sequence of travel; for example, the fol

lowing change could have reduced the distance by three miles: 
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14\ 15 V ^16 

15^ \6 ^1 

Modified: 14 16 15 

16 15 

Net change = + ̂^5^x5 + ̂6,1^ " (^14,16 ^16,15 ^15,1^ 

= (5 + 3 + 33) - (5 + 3 + 30) 

= 41 - 38 = 3 

With the net cost chart (Figure 16), the same change was better 

illustrated : 

0 
12) 3^ 

0 rîô 

-25 r27 0 i3 

Old: 

New ; 

Net change 

14 16 15 1 

(0) + (30) + (-27) = 3 

This chart greatly simplified the process of making effective changes 

on the milk route. The number of changes to be considered was reduced 

tremendously, because only those which include one or more positive 

values can shorten the route. Only eight of the 16 columns have positive 

values and only one value from each column can be selected; therefore, 

the optimum change can have no more than eight positive values -- the 

best change had five positive values (Figure 20, p. 77 ). Of the 239 
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values in the chart, only 27 are positive. By highlighting these posi

tive values, appropriate changes may be found much more readily. 

Using Figure 16, the hauler looks for deviations which improve the 

route. Not being impressed by the three-mile improvement described 

earlier, he tries to avoid the -27 by traveling from 15 to 14 instead of 

from 15 to 1. Using a transparent overlay and a china marker, the hauler 

draws in a proposed route. He attempts to take advantage of the positive 

8 by traveling from 6 to 5 and the positive 14 by traveling from 4 to 3 

(Figure 17). These and other improvements would reduce the route dis

tance from 135 to 124 miles. Once such deviations are made and recorded 

on the chart, other improvements become evident. For example, the use 

of the positive 14 appears too costly because of having to accept the 

-6 for segment 3,8 and the -17 for segment 8,16. To avoid these nega

tives, farm 4 may be linked to farm 16 instead of to farm 3, thus permit

ting the linking of farm 5 to farm 3 and farm 3 to farm 4. The distance 

from 5 to 3 and on to 4 is five miles shorter than going directly from 

5 to 4. These deviations did improve the arbitrary route by 15 miles 

(Figure 18). Note that going from 4 to 16 along the new route lengthens 

the initial route by 9 miles. A possible improvement is to travel from 

4 to 15 and on to 16 which would lengthen the initial route by only six 

miles, -- when extended to another segment, an improvement is verified; 

for example, the distance from 4 to 14 along this route is 39, as given 

by: 
4 16 15 

16 15 14 

(31) + (3) + (5) = 39. 
(Distance) 
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Route A: Initial route = 135 miles 

0 3 -4 -3 -2 4 -5 -9 3 -31 -27 -30 -27 -29 -1 

- 1  0  - 6  - 2  - 4  3  - 6  - 9  6  - 3 1  - 2 8  - 3 1  - 2 8  - 3 0  - 2  

-5 -1 0 (T) 8 0 9 -10 -14 -1 -36 -32 -36 -33 -35 -7 

-6 -2 0 0 (V) -1 9 -12 -14 -1 -36 -32 -36 -33 -34 -7 

-6 -6 -5 -7 0 (^2) 14 -8 -17 -4 -28 -24 -27 -24 -26 2 

-14 -14 -12 -12 -4 0 -16 -24 -11 -29 -24 -27 -24 -25 2 

-8 -7 -5 -15 -9 -6 0 (J) -3 10 -19 -16 -19 -16 -17 10 

-9 -8 -5 -16 -8 -12 -5 0 16 -20 -16 -19 -16 -18 10 

-12 -12 -6 -19 -11 -15 -8 -3 0 -18 -15 -18 -15 -17 11 

-28 -28 -25 -36 -28 -21 -8 -14 -18 0 4 1-5 -11 18 

-29 -28 -26 -36 -28 -21 -7 -15 -18 -1 0 (ÏÏ) 2 -4 -11 19 

-33 -33 -31 -42 -34 -26 -12 -20 -23 -6 -5 0 -2 . -9 21 

-28 -28 -26 -37 -29 -21 -7 -15 -18 -1 -9 -4 0 (u) -2 28 

-28 -28 -26 -37 -28 -21 -6 -14 -18 -1 -13 -9 -5 0 30 

-31 -30 -28 -39 -31 -23 -9 -17 -20 -3 -14 -9-5 0 0 

2 4 -6 -1 0 6 -4 -8 5 -29 -26 -28 -25 -27 

Figure 16. Net costs of deviating from an arbitrary milk route 

0 
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Route A: Initial route = 133 miles 
Improved route = 124 miles 

-2 4 -5 -9 3 -31 -27 

- 2  

cl2 

10 

-12  -12  -18 

-14 

-15 

- 2 0  

-15 

-14 

rl7 

Figure 17. Net costs of deviating from an arbitrary milk route, including an improvement 
of 9 miles 
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Route A: 

© 

-8 -7 -5 -15 -9 -6 

-9 —8 -5 —15 -8 -12 

-12 -12 -6 -19 -11 -15 

-28 -28 -25 -36 -28 -21 

-29 -28 -26 -36 -28 -21 

-33 -33 -31 -42 -34 -26 

-28 -28 -26 -37 -29 -21 

. -28 -28 -26 -37 -28 -21 

-31 -30 -28 -39 -31 -23 

2  4 - 6 - 1  0  

Figure 18. Net costs of deviating from an 
of 15 miles 

Initial route = 135 miles 
Improved route = 120 miles 

4 - 5 - 9  3  - 3 1  - 2 7  - 3 0  - 2 7  - 2 9  - 1  

3 - 6 - 9  6  - 3 1  - 2 8  - 3 1  - 2 8  - 3 0  - 2  

9 -10 -14 -1 -36 -32 -36 -33 -35 -7 

9 -12 -14 -1 -36 -32 -36 -33 -34 -7 

14 -8 -17 -4 -28 -24 -27 -24 -26 2 

- 2  21 12 

arbitrary milk route, including an improvement 
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Route A: Initial route = 135 miles 
Improved route = 117 miles 

-2 4 -5 -9 3 -31 -27 -2 

-1 

.-2 

-12 -12 

14 -18 

20 -23 

- 2  

14 -18 

Figure 19. Net costs of deviating from an arbitrary milk route, including an Net 
improvement of 18 miles 
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Route A: Initial route = 135 miles 
Improved route = 117 miles 

10 -14 

- 2  

-12 -12 10) -18 

18 

15 -18 19 

12 

14 -18 30 

Figure 20. Net costs of deviating from an arbitrary milk route, including an improvement 
of 18 miles 
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However, the distance from 4 to 14 along'another path is 36, as given 

by: 

4 15 16 

15 16 14 

(28) + (3) + (5) = 36. 
(Distance) 

These and other changes did shorten the distance by 18 miles, producing 

a 117-mile route (Figure 19). 

The hauler may be pleased with the shortened distance, but may not 

be happy with the sequence. Some dairy farmers frequently do their milk

ing late, causing the hauler to either wait or return after collecting 

from other farms. If position 7 were the farm where the dairyman milks 

late, the hauler could bypass it and return later (as permitted in 

Figure 20). This route is still an improvement of 18 miles. 

The hauler could improve his current route instead of some arbitrary 

one, and avoid preparing a second matrix of distances. The generation of 

improvements from this matrix appears to be a little more difficult; how

ever, it can be just as effective, as will be shown by the changes that 

follow. These changes also illustrate that the choice of the first 

improvement is not important because, once it is made, others become im

mediately apparent. For example, the first improvement discovered on 

the hauler's route reduced the distance from 135 to 126 miles, a reduc

tion of only nine miles (See Figure 21). As soon as the new route line 

was recorded, an additional improvement of one mile was discovered 

(Figure 22). 
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This procedure of making successive changes was continued until 

all improvements appeared to be exhausted, when the route distance was 

reduced to 117 miles. The 18 mile reduction could have been accomplish

ed with only one change, but was not because it is easier to find several 

successive, improvements than to find the single perfect chance. Each 

adjustment was easily made, since it only required drawing part of a 

route line on a transparent sheet which covered the net cost chart,. 

Once the new route line was recorded, another transparency was placed 

over the first one, so that a deviation from the new route could be 

temporarily recorded and evaluated. After the improved route was re

corded on the top transparency, it was then placed directly over the 

chart so that deviations from it could be evaluated in the same manner. 

This procedure was continued until improvements appeared to be exhausted. 

Table 10 identifies key improvements that reduced the hauler's 

route length from 135 miles to 117 miles. Figures 21, 22, 23, 24, and 

25 show the complete change for each improved route. 

Computer Algorithm Position 1 of route B represents the truck 

garage at the home of the hauler. In the morning, the driver goes di

rectly from his home to the dairy farms, but after collecting the milk 

he goes to the process plant before returning home. Therefore, the 

distance from his home to a dairy farm is not the same as from that farm 

to his home. This is an example of the nonsymmetric case. The models 

presented by Shen Lin (13) are not appropriate for this type of problem, 

because they are limited to the symmetric case. 
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Table 10. Key improvements that reduced the hauler's route length frora 
135 miles to 117 miles 

Improvement over : 
Change , Figure Previous Initial 
Number Number Route Route Key Improvements 

1 21 9 mi. 9 mi. 

2 22 1 mi. 10 mi. Old; 9 1 
New : 9 8 1 

3 23 2 mi. 12 mi. Old: 3 16 15 14 
New : 3 15 16 14 

Old: 8 1 
New : 8 2 1 

4 24 2 mi. 14 mi. Old: 8 15 
New : 3 4 15 

5 25 4 mi. 18 mi. Old:' 7 6 5 2 
New : 7 2 6 5 
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Route A; Initial route = 135 miles 
Improved route = 126 mile 

- 2  

- 2  

-14 -12 

- 2  

-12 -18 -3 

-14 

L-17 

Figure 21. Net costs of deviating from the milk route traveled by the hauler, including 
an improvement of 9 miles 
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Route A: Initial route = 135 miles 
Improved route = 125 miles 

- 2  

-14 

- 2  

-12 

-28  -22  11 

-29 -22 12 

- 2  

-28 -22 

-28 -22 

-31 -24 

Figure 22. Net costs of deviating from the milk route traveled by the hauler, including of deviating from cost s 
an improvement of 10 miles 
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Route A: Initial route = 135 miles 
Improved route = 123 miles 

- 2  -29 

-17 - 2  -26 

•14 -12 -25 

-14 -35 

-14 -34 

-30 

-15 -11 -17 

-2 -12 -14 -16 -10 -9 -18 10 

-12  -15 -17 -19 -13 -1 -3 10 -18 -17 

-28 22 -21 -17 -36 -30 -20 -14 -18 -11 

-29 22 -21 -16 -36 -30 -21 12 -11 

-26 —21 -42 -36 —26 -33 

-28 22 -21 -16 -37 -31 -21 -15 -18 - 2  

-28 22 1-21 -15 30 

-31 

Figure 23. Net costs of deviating from the milk route traveled by the hauler, including Net f deviating fr t c s o s o om 
an improvement of 12 miles 
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Route A: Initial route = 135 miles 
Improved route = 121 miles 

- 2  

•14 -12 

- 2  

10 

-12 

15 -18 

- 2  

- 2  

14 -18 30 

33 -23 17 -20 

Figure 24, Net costs of deviating from the milk route traveled by the hauler, including 
an improvement of 14 miles 
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Route A; Initial route = 135 miles 
Improved route = 117 miles 

- 2  

• 14 - 1 2  

-10 -14 

-12 -14 

- 2  

-8 10 

-18 11 -12 

21 

- 2  

30 14 -18 

-31 

gure 25. Net costs of deviating from the milk route 
an•improvement of 18 miles. 

traveled by the hauler, including 
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The route actually traveled by the hauler was 253 miles long. His 

tour, which has a sequence 1 2 3 4 ... 15 1, lies along the major 

diagonal of Table 12. The computer selected a different initial route 

by always proceeding to the next closest available dairy farm. When 

there were two or more closest farms, the last one was selected. Using 

this procedure, the initial route chosen was 277.4 miles long. The 

computer algorithm which searches for the largest three-segment change 

was used to reduce the route distance from 277.4 to 228.7 miles: 

1 11 

11 12 

1 11 

11 12 

1 11 

11 12 

1 11 

11 12 

Once the distance was reduced to 228.7 miles, further evaluations 

failed to find another three-segment improvement. When applied after 

the three-segment algorithm, the four-segment algorithm failed to reduce 

12^ 13 14 15____9 8 2 3 7 4 5 10 

13- 14 15 ^9 8 23 7 4 6 5 10 
(Initial route distance is 277.4 miles) 

12 8 2 3 5 10 13 14 15 

9 8 2 3 7 4"^ '6 5 Mo 13 14 15 1 
(Route distance is 235,0 miles) 

2^3 7 6 5 4 10 13 15 15 12 

9 8 2-^3 7 6 5 4^10 13 14 15 
(Route distance is 231.9 miles) 

12 3 ... 7. 6 5 4 2 10 13 14 15 

9 8 3 7 6 5 4 2 10 13 14 15 1 
(Route distance is 228.7 miles) 
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the distance any further. The complex procedure of generating changes 

with the three's and four's (described in Phase 4) also reduced the route 

from 277.4 to 228.7 miles. The computation time on an I.B.M. 360 com

puter using a Fortran language was approximately 10 seconds. 

Route C also has some nonsymmetric distances; for example, the 

distance from 2 to 1 is 91 miles, while the distance from 1 to 2 is only 

37 miles (See Table 13). The route traveled by the hauler was 285 miles 

long: the computer reduced the distance to 275 with the largest three-

segment algorithm, and to 271 miles with the algorithm described in 

Phase 4. The per cent reduction is deceiving in two ways, since some 

of the farms are more than a hundred miles (220 round trip) from the 

process plant, no change short of relocating either the farms or the 

process plant can improve this situation. The location of the farms 

form an elongated pattern which makes the task of route selection rela

tively easy; for example, if all farms were located on a stright line, 

there would be no question that the shortest route is along the straight 

line, and the hauler would have no trouble recognizing this. The farms 

on most milk routes are scattered rather than distributed in an elongat

ed pattern. 
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DISCUSSION 

Obvious uses of the optimum route model were mentioned in the 

Introduction; however, a use which is not so obvious modifies the 

shortest route algorithm to give the most reliable route through a 

network. Let be the reliability of a segment between node i and 

node j, and let be the system reliability. The reliability of a 

system which has three compartments -- a, b, and c_ -- that can fail 

independently is 

Ps -

Using the relationship: 

loggPg = Idgg + loSe 

the segments take on an element of length which can be summed; however, 

the logarithms of these reliabilities will be negative, because the in

dividual P's are less than unity.^ Therefore, the more appropriate re

lationship is 

- loSe - loSe 

Next, let D be the distance through the network, then 

D = - log P or 
e s 

-D = log P . Then, 

-D 
The system reliability P^ is equal to e where D is the sum of the seg

ment distances between the initial and final nodes of the system network. 

If there are alternative routes, the maximum reliability is attained when 



www.manaraa.com

89 

D is the shortest route. G. R. Shorack (23) describes some procedures 

for determining the most reliable route. 

Another possible application for the optimum route model is in a 

military strategic or combat situation where there are several objectives 

to be attained and the cost of attaining any one depends upon which ob

jective was attained immediately before it. In this case, the total cost 

of accomplishing all the objectives is dependent upon the sequence in 

which they are attained; therefore, the minimum cost is produced by 

selecting the optimum sequence (shortest route) through a network of 

objectives. 

In a similar way, if a company's cost of attaining long range ob

jectives depends upon the order in which they are accomplished, the 

optimum route model can help management do more effective planning and 

decision making. 

This investigation was limited to selecting an optimum route through 

a given number of points. Further investigation is needed to develop an 

algorithm which will divide a larger area into two or more optimum routes; 

for example, when several repair crews service outlying facilities, how 

should their areas be divided for total optimum cost? Even the number of 

crews becomes an important factor when the cost of overtime and the cost 

of overnight lodging are considered. The algorithm may include such fac

tors as the costs of meals and lodging for each night that a crew cannot 

return home, truck load limitation, overtime wages, and other constraints 

such as limiting the number of consecutive nights that a crew can stay 

away from home. 
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Although effective as a searching tool, each computer algorithm 

should be investigated further: 

1. To determine the precision that results from a given number of 

evaluations and changes, 

2. To find the number of initial routes that should be generated 

in order to minimize the searching effort for a given precision, 

3. To determine how these tools should be combined in order to 

minimize searching effort for a given precision. 

The routing model is also applicable as a search model: One 

searches for an optimum route just as scientists search for hypotheses, 

decision-makers for optimal strategies, advertising agencies for custo

mers, and personnel departments for good executives. (The first search 

model was believed to have been developed during World War II to solve 

decision problems regarding air patrol searches for enemy submarines.) 
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SUMMARY AND CONCLUSIONS 

The object of this investigation was to develop efficient and re

liable methods for selecting the optimum route from a large number of 

possible routas. Traditionally, this routing problem has been illustrat

ed by describing the task of selecting the optimum route for a traveling 

salesman who starts from a given city and stops at each city of a speci

fied group before returning to his origin. With a total of (n-l)I 

routes, the task of evaluating each of them and selecting the optimum 

one is impractical and often virtually impossible. The number of stops 

on the route is represented by n. 

Efficient manual and computer algorithms capable of transforming a 

given route into the optimum route were developed. Problems once thought 

too large for a high-speed computer may now be solved manually and most 

problems encountered can be solved by a computer algorithm within 30 

seconds. These models were used to improve the routing of trucks on 

milk collection routes having 15 and 16 transfers. 

Conclusions: 

1. The optimum route may be produced by making particular changes 

on an arbitrary route. 

2. Only one feasible change is required to transform any route 

into the optimum route, although more than one may be made. 

3. The optimum route may be selected without evaluating all 

possible routes. 



www.manaraa.com

92 

4. Only feasible changes need to be considered since other changes 

-J 
produce incomplete routes. 

5. A net cost chart which shows the cost of deviating from a given 

route is a sufficient guide for producing a change that can transform 

any route into the optimum route. 
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11 

12 

13 

14 

15 

16 

.11. Matrix of distances from each dairy farm to every other 
dairy farm. Route A | 

10 11 12 13 14 15 16 

8 

9 

0 2 8 

2 0 10 

8 10 0 

16 18 8 

7 5 

8 6 

3 4 12 

10 11 14 

11 12 20 

14 16 23 

30 32 29 

31 32 29 

35 37 34 

30 32 29 

30 32 29 

33 34 31 

16 7 

18 5 

8 8 

0 13 

13 0 

13 1 

19 7 

22 16 

27 17 

30 20 

30 37 

29 37 

34 43 

29 38 

28 38 

31 40 

8 3 10 

6 4 11 

9 12 14 

13 19 22 

1 7 16 

0 7 18 

7 0 12 

18 12 0 

17 12 

20 13 

37 32 20 

37 33 21 

43 38 26 

38 33 21 

37 33 20 

40 35 23 

6 

9 

11 14 

12 16 

20 23 

27 30 

17 20 

17 20 

12 13 

6 9 

0 

3 

3 

0 

21 19 

21 20 

26 25 

21 20 

21 20 

23 22 

30 31 35 

32 32 37 

29 29 34 

30 29 34 

37 37 43 

37 37 43 

32 33 38 

20 21 26 

21 21 26 

19 20 25 

0 16 

10 5 

6 5 0 

10 9 7 

14 14 12 

15 14 12 

30 30 33 

32 32 34 

29 29 31 

29 28 31 

38 38 40 

38 37 40 

33 33 35 

21 20 23 

21 21 

20 20 

10 14 15 

9 

7 

0 5 

5 0 

5 3 

23 

22 

15 

14 14 

12 12 

5 

3 

0 
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Table 12. Matrix of distances from each dairy farm to every other dairy 
farm. Route B 

10 11 12 13 14 15 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

0 125 127 138 143 140 134 116 112 125 70 68 63 58 57 

69 0 2 10 18 16 8 9 12 20 68 57 64 67 68 

70 2 0 12 17 14 7 11 14 22 70 59 66 68 70 

79 10 12 0 5 5 6 22 26 33 82 70 78 80 82 

87 18 17 5 0 8 10 28 31 39 87 76 83 85 87 

84 16 14 5 8 0 8 25 28 36 74 73 80 82 84 

77 8 7 6 10 8 0 18 22 29 78 66 73 76 77 

78 9 11 22 28 25 18 0 3 11 59 48 55 58 59 

81 12 14 26 31 28 22 3 0 8 56 45 5 2 54 56 

89 20 22 33 39 36 29 11 8 0 48 37 44 67 68 

2 68 70. 82 87 74 78 59 56 48 0 21 9 12 13 

3 57 59 70 76 73 66 48 45 37 2 0 7 10 11 

11 64 66 78 83 80 73 55 5 2 44 9 7 0 5 6 

13 67 68 80 85 82 76 58 54... 67 12 10 5 0 2 

15 68 70 82 87 84 77 59 56 68 13 11 6 2 0 
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13. Matrix of distances from each dairy farm to every other dairy 
farm. Route C 

10 11 12 13 14 15 16 

0 

37 

80 

92 

96 

102 

95 

90 

92 

92 

88 

91 

87 

85 

82 

77 

91 132 

0 43 

43 0 

55 12 

59 16 

76 23 

58 16 

33 10 

55 12 

55 12 

50 24 

56 19 

50 18 

49 19 

47 18 

42 23 

144 144 153 

55 59 

12 16 

0 

5 

18 10 

76 

23 

5 18 

0 10 

19 23 

24 28 

13 16 15 

21 

26 

26 32 29 

28 36 33 

30 36 35 

30 35 34 

28 34 32 

34 39 37 

148 141 135 

58 33 55 

16 10 12 

3 13 19 

8 16 23 

15 21 9 

0 

9 

16 

0 

7 

20 12 

24 15 

16 

7 

0 

5 

130 127 127 124 123 

55 50 56 50 49 

12 24 19 18 19 

24 26 28 30 30 

28 32 36 36 35 

26 30 33 35 34 

21 24 27 26 27 

12 15 - 18 18 18 

12 11 12 

6 

26 18 12 

26 18 11 

27 18 12 

26 18 11 

31 23 16 

5 

0 

3 

6 

6 

7 

7 

3 

0 

3 

3 

4 

6 

3 

0 

5 

6 

10 

6 72 

3 4 

12 11 14 

5 

0 

1 

4 

9 

6 

1 

0 

4 

8 

124 116 

47 42 

18 23 

28 34 

34 39 

32 37 

26 31 

18 23 

11 16 

7 12 

6 11 

10 14 

4 9 

4 8 

0 5 

5 0 
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